AJTHOR TITLE

Davis, John D.. III; Dunklau, M. William Faculty Projection Program: General Description and Jsers Guide. Project SIMJ-School: Dallas Component.
INSTITUTION Dallas Independent School District, Tex. Dept. of Research and Evaluation.
SPONS AGENCY Bureau of Elementary and Secondary Education (DHEW/OE), Yashington, D.C.
RR-75-617
Feb 75
80p.; Related documents are EA 007 350-354
MF-\$0.76 HC-\$4.43 PLUS' POSTAGE
Computer Orientéd Programs; *Cbmputer Programs; Data; Analysis; Educational Administration; Elementary Secondary Education; *Management Systems; *Personnel Needs; *Program Guides; Teacher Characteristics; *Teacher Erployment: Teacher Salaries
IDENTIFIEFS : Elementary Secondary Education act Title III; ESEA Title III; *Faculty Projection Program; Project SIMU School

ABSTRACT
This booklet describes the Faculty Projection Program. a computer program package developed as part of a family of educationgl management systems. The program predicts the number and cost of thachers starting, terminating, remaining, and needed each year. Teachers may be grouped by one or more variables such as race, sex, salary group, subject area, or professipnal, status. The program can project teacher requirements for op to níne years into the future. The booklet is organized into two sections-a brief general description and a much more lengthy user's guide providing a detailed explanation of how to use the program. A sample printout for the program is included in the appendix. (Aythor/JG)

Development Division Mr. Rogers L. Barton Associate Superintendent

Department of Research, Evaluation, and Information Systems
Dr. William J. Webster
Deputy Associate Superintendent

FACULTY PROJECTION PROGRAM:
general description and users guide
Research Report No. 75-617
John D. Davis III
Senior Analyst
M. William Dunklau

Technical Director

Approved report of the Department of Research, Evaluation, and Information Systems

III
Senior Analyst
Project Simu-School

An Nichain Aemblan

M. William Dunklau Technical Director Project Simu-School

Deputy Assistant Superintendent
Planning and Data Processing Services

William J. Webster, Ph.D. Deputy Associate Superintendent Research, Evaluation, and Information Systems

Objectives of the Project: The Faculty Projection Program predicts on a year-to-year basis the number and cost of teachers starting, terminating, remaining, and needing to be hired. Teachers may be grouped by one or more variables such as race, sex, salary group, subject area, or professional status. The program moves teachers through the salary schedule and terminates them according to frequencies established by historical data. It determines the number of teachers required from enrollment data and from previous years' curticulum data, and alternatives introduced externally by the user. The program can project teacher requifements for up to mine years into the future.

The program is an independent computer program package and is one of the components in a comprehensive family of programs which includes the Enrollment and Facilities Projection Program and the Financial Projection Program. Separately or as a total set, the aim is to improve educational planning and decision-making at the district level.

The prediction mathematics used ín the Faculty Projection Program is a probabilistic process. Using the starting complement of teachers for the current year, the process predicts the status of the group for the next year using transition probabilities calculated from the data base. For example, some teachers will have received advanced degrees and will be paid on a higher pay grade. Some teachers will switch teaching areas. Some will terminate. Most of the remaining teachers will advance one pay step in the salary schedule. The program anticipates these possibilities by calculating transition probabilities for each possible event.

These transition probabilities are organized into rows, and the rows into what is called a transition probability matrix. By performing a multiplication of the starting teacher complement times the transition probability matrix, the program predicts the status of the group one year later, including the number and status of teachers who will remain and the number of teachers who will terminate at the end of the current school year.

The program predicts next year's starting complement of teachers by using the remaining teachers from the current year and by hiring new teachers as needed. If enrollment and distribution of subjects taken remain similar from one year to the next, terminating teachers will tend to be replaced in the hiring process. If enrollment or distribution of subjects taken or other factors change, the hiring process will reflect the change.

A new starting complement of teachers is calculated from the remaining and newly hired teachers. With the new starting complement, the entire process is repeated in o-der to project teacher requirements for the following year, and so on, for up to nine years of projections.

The Faculty Projection Program predicts on a year-to-year basis the number and cost of teachers within an LEA. The program was created in response to a need -- the need for means by which school administrators could quantitatively plan for expenditures which constitute approximately 75% of their operating budget -- personnel' costs. The program provides a means of integrating at one time many factors which affect faculty flow within a school district.

The program predicts the number and cost of teachers starting, terminating, remaining, and, needing to be hired for each year. Teachers may be grouped by one or more variables such as race, sex, salary group, subject area, or professional status. The program moves teachers through the salary schedule and terminates them according to frequencies established by historical data. It detemines the number of teachers required from enrollment data and from previous years' curriculum data, and alternatives int doded externally by the user. The program can project teacher requirements for up to nine years into the future.

The Faculty Projection Program is written in FORTßAN IV and was originally implemented on a Burroughs B-5500 computer. Memor'y requirements in a nonvirtual storage environment are approximately 500,000 bytes. Peripheral equipment requiretnents are a disk, two tape drives, a card reader, and linc ${ }^{\text {a }}$ printer. Special arrangements can be made in order to implement the program in computer enviroments where less than 500,000 bytes of momory are available. Computer gystems having less than 500,000 bytes of memory but with virtual storage available can implement the program dirccily.

The input requirements for the Faculty Projection Program can be decribed as being of two general types: data base and parametric.

Data Base Input Requirements

The level of accuracy at which the program performs is directly dependent upon the accuracy and extent of the teacher data base. A minimum list of elements to be contained in the data base would be: social sécurity number, race/sex, termination reason(s) and date(s), course assignments, number of students in each course assignment, and pay grade/pay step. A minimum of three years of - teacher data is necessary with four to six years of data being much more desirable. The data base should start with the currefit or last year and go back in time from there.

Parametric Input Requirements

The user has the ability to specify as few of or as many of the available parametric options as are deemed necessary for a given projection. The available options may be described as being of two general types: 1) those that reference the-data base, 2) those that cause deviations from dáta base trends. Included in the first type of option or variable would be race, sex, subject area, degree, pay grade and pay step. The second type of option would include the ability to specify numbers of teachers and/or students, distribution of teachers and/or students by subject taught or taken, respectively, or by count, and salary changes at any or all levels. Generally, the second type of option can be speci'fied for any or all years of the projection.

Functional Description

The prediction mathematics used in the Faculty Projection Program is a probabilistic process. Using the starting complement of teacher, for the current year, the process predicts the status of the group for the next year using transition probabilities calculated from the data base. The diagram below

Some teachers will have received advanced degrees and will be paid on a higher pay grade. Some teachers will switch teaching areas. Some will terminate. Most of the remaining teachers will advance one pay step in the 'salary schedule. The program anticipates these possibilities by calculating transition probabilities for each possible event. For example, if the salary schedule were limited to three levels and included a provision for terminations, four transition probabilities would be calculated for each salary level. Suppose our three levels are:

1) Bachelor degree with $0-4$ years experience
2) Bachelor degree with 5 or more years experience
3) Advanced degree

Suppose further that the historical data shows that 70% of the bachelor degree personnel with $0-4$ years experience remain In_{n} that pay level for the following year, 10% advance to the 5 or more years of experience level, 10% obtain advanced degrees, and 10% terminate. And suppose that the historical data shows that 75% of the bachelor degree personnel with 5 or more, ears of experience remain in that pay level, 15% obtain advanced degrees, and 10% teminate. Finally, suppose that 95% of the personnel with advanced degrees stay from year to year. Now by organizing these transition probabilities into rows, the program creates what is called a tralsition probability matrix.

The transition probability matrix for the above data is represented by:

TRANSITION PROBABILITIES
BS/0-4 BS/5 or more Advanced degree Terminate
$\left.\begin{array}{lllll}\text { SALARY } & \text { BS } / 0-4 \\ \text { LEVELS } & \text { BS } / 5 \text { or more } \\ & \text { Adv. Deg. } & {\left[\begin{array}{lll}0.70 & 0.10 & 0.10 \\ 0.00 & 0.75 & 0.15 \\ 0.00 & 0.00 & 0.95 \\ & & \end{array}\right]=0.10} \\ 0.05\end{array}\right]$

If the starting complement of teachers were composed of 40 teachers with $0-4$ years of experience, 40 teachers with 5 or more years of experience, and 20 teachers having advanced degrees, then the program would create a starting teacher vectoı represented mathematically by:

$$
\left[\begin{array}{lll}
40 & 40 & 20
\end{array}\right]
$$

By performing a multiplication of the starting teacher vector times the transition 5 probability matrix, the program predicts the status of the group one year later. Vector-matrix multiplication is performed by multiplying each element of the vector by each element of a column in the matrix and summing the results to create an element in the corresponding column of the product vector. For example, the number of bachelor degree personnel with $0-4$ years of experience is predicted to be $40 \times 0.70+40 \times 0.00+20 \times 0.00=28.0$.

The matrix multiplication is shown by:

$$
\left[\begin{array}{lll}
40 & 40 & 20
\end{array}\right] \times\left[\begin{array}{llll}
0.70 & 0.10 & 0.10 & 0.10 \\
0.00 & 0.75 & 0.15 & 0.10 \\
0.00 & 0.00 & 0.95 & 0.05
\end{array}\right]=\left[\begin{array}{llll}
28 & 34 & 29 & 9
\end{array}\right] .
$$

The result of the matrix multiplication predicts 28,34 , and 29 teachers one year later in each salary level, respectively. Nine teachers are predicted to terminate.? There were 100 teachers in the starting, complement and all 100 arc accounted for in the prediction since $28+34+29+9=100$. The process, therefore, has predicted the number and status of the teacher who will remain and the number of

The program predicts next year's starting complement of teachers by using the remaining teachers from the current year and by hiring new teachers as needed. If enrollment and distribution of subjects taken remain similar from one year to the next, terminating teachers will tend to be replaced in the hiring process. If enrollment or distribution of subjects taken or other factors change, the hiring process will reflect the change.

The hiring process is added to the previous diagram to construct the compleie faculty flow process as shown below.

The "Teachers Needing to be Hired" block is obtained by the following calculation:

| Teachers
 Needing
 to be Hired |
| :--- | | Total Teachers |
| :--- |
| Needed |$\quad-$| Teachers |
| :--- |
| Remaining |

"
The "Total Teachers Needed" block is obtained from enrollment, class size, subject area distribution and other parameters.

Therefore, by introducing the hiring mechanism to the process, a new "Starting Complement of Teachers" can be calculated. With the new "Starting Complement of Teachers" the process can then be repeated in order to project teacher requirements for the following year, and so on, for up to nine years of projections.

Major Report

The report shown on the following pages is the "Year End Description Report." It uses test data to show the results of applying the projection process to a starting complement of teachers.

The remaining teachers are shown on the line associated with their pay level. The terminating teachers are shown below them on the line associated with their. termination reason.

Project Simu-School
Dallas Independent School District .
I. Synopsis 1.1
II. PERSIM Variables 1.2
III. Data Base Definition 1.3
IV. PERSIM Control Card Definftions 1.4
V. Program Description 2.1
VI. Teacher Vector Description 2.4
VII. MARKOV Transition Matrix 2.6
VIII. Program Control 3.AlIX. Program Control Cards
Program Definition Control Card 3.A2
TMAT 3. A3
999999 3. A4
X. Initializing Control Cards 3. B1
ADIVEC 3. B2
OLDDIS 3. B3
OLDPUP 3. $B 4$
XI. Cost of Teachers 3. C 1
BASINC $_{1}$ 3. C2
INDEX
XIf. Printout Control Cards 3. D1
INPMAT, OUTMAT, TRMMAT, HIRMAT 3.D23.C3
NOMATS

TABLE OF CONTENTS, continued

[^0]PERSIM is the name of the Faculty Projection Program. It is' a Fortran computer model for predicting the future state of a public school system, including costs and number of teachers required. PERSIM uses historical infor within thirteen possible descriptive variables, as explained under the heading PERSIM VARIABLES, to predict a probabilistic image of future personnel levels and staffing events within a public school system. Various specified charges çan be simultancously imposed upon the model to see their effect upon the future state of the school system.

The model employs an historical data base to formulate the prediction mechanism. The required elements of the data base are given under the heading DATA BASE.

The prediction mechanism employs a Markov chain mathematical method to produce a probabilistic projection for each description of an employee. The employee description is determined by the particular PERSIM variables which have been selected by the user. The PERSIM variables are listed under the heading PERSIM VARIABLES.

Since the program is written in FORTRAN, it can therefore be adapted co run on most medium to large scale computer systems. Peripheral equipment requirements are a disk, two tape drives, a card reader, and a line printer.

The following data description for each teacher is used for historic input to the PERSIM model.

The following data must be supplied for each academic year:

Up to 6 fields of 6
6 fields of 3 corresponding to above
6 flelds if 2 corresponding to above $1{ }^{\prime}$
2
4
5
1
2

5
2

Texas Course Assignment Code
Number of Pupils in Courses
Number of Classes Taught
Highest Degree
Total Experience
Professional Status
DISD Salary, Actual
Pay Grade
Pay Step
Foundation Salary
Principal Rating

PERSIM CONTROL CARD DEFINITIONS

No.	Mnemonic	$\begin{aligned} & \text { Employing } \\ & \text { S.R. } \\ & \hline \end{aligned}$	Definition
18	EPUPIL	NEWGEN	Number of elementary pupils
19	ETEACH	NEWGEN	Number of elementary teachers
20	EPTRAT	NEWGEN	Elementary pupil/teacher ratio
21	HIRERQ	NEWGEN	Fractional distributions within PERSIM variables for hiring procedures.
22	TCHREQ	RTLONG	Number of teachers required in each teaching area
23	CLSPput	RTLONG	Average number of classes per secondary pupil
24	ECLSPP	RTLONG	Average number of classes per elementary pupil
25	PUPCLS	RTLONG	Number of pupils in classes by teaching area
26 27	NOVECS NOMATS		Do not print any complete descriptions of the vectors
27	NOMATS		Do net print any annual summation chat
28	RTLONG	RTLONG	Select the RTLONG subroutine for hiring procedure
29	RTSHRT	RTSHRT	Select the RTSHRT subroutine for hiring procedure
30	RTOLD	RTOLD	Select the RTOLD subroutine for hiring procedure
31	OLDDIS	OLDDIS	Store starting vector distribution in HIRERQ Array for one PERSIM varlable
32	" ORDVEC	REPORT	Organize the detailed vector printouts to be grouped in the sequence specified
33	OLDPUP	RTLONG	Store the starting vectior distribution in PUPARA array.
34	ADIVEC	MCP	Adjust the initial starting vector for known changes.
35	TMAT	TMATAV	Define which years of history and the corresponding weighting to be used for creating the transition matrix.

PERSIM contains two major segments.

SEGMENT ONE, FORMULATION OF PREDICTION EQUATIONS

The first segment examines the historic data base, determines which variables have been selected, and from these two inputs creates the prediction mechanism, a Markov transition matrix. The transition matrix created and written on tape by segment one is employed in segment two to predict the school system's state in future years. A description of the teachers presently in, the system is also accumulated by segment one and written on the tape.

Control information, in the form of PROGRAM DEFTNITION CONTROL CARD must be read into the program to select the PERSIM variables desired. There are 13 possible variables to choose from, of which Pay Grade/Pay Scale/ Terimination Code (PG/PS/TC) (PERSIM variable 9) must be selected. Up to three additional variables may be selected in addition to PG/PS/TC, at the user's discretion. Some care must be taken in the variable selection to assure that the maximum sizes of all the variables (see PERSIM VARIABLES) multiplied together will not exceed 10,100 .

Segment one is a high cost portion of the program and need only be run once on the historic data for any particular combination of PERSIM variabies.

SEGMENT TWO, ANNUAL PREDICTIONS

Segment two uses the prediction equations formulated in segment one to profect the state of the school system for up to nine years into the future.

The prediction mathematics, a Markov chain, will predict the terminations as well as the description of the teachers remaining in the system. The user, by specifying the size of the school system and a method for hiring new teachers, will control the augumentation of the personnel from year to year. There are three methods at the user's disposal for calculating the teachers required:

Short Method - This method uses systemwide pupil/teacher ratios at the secondary and elementary levels to project future teacher requirements (see SHORT METHOD OF HIRING).

Long Method - This method employs Subject Area or Certification Area (PERSIM variables 3 or 4) using area by area pupil/teacher ratios and average class size to project futureseacher requirements. This method generally presumes accurate and complete knowledge of the present state of the school system concerning percentage of students in each area. class sizes, classes per student, and classes per teacher (see LONG METHOD OF HIRING).

01d Method - This method employs the short method above for calculating the quantity of teachers needed, but forces the hiring to be such that the following years teacher distribution within each PERSIM variable will remain identical.to the present year's data (see OLD DISTRIBUTION HIRING METHOD) .

The printed results are of two forms (see Appendix C). The first format
tabulates tw PERSIM variables for each year the profection is made. All combinations of PERSIM variables and all four teacher vectors can be printed along with their costs. The second format for printed results is a summary of all years of the number of teachers within each description state of the four teacher vectors. This is a complete detalled summary of the teachers involved.

All three hiring methods force rácial balance upon the overall school system to a predetermined level. The level is 25% non-white at present.

This second segment of the program is relatively inexpensive and can be rerun many times using one output tape from segment one. A wide variety of "what if", "how much", and "how many" type of questions can be answered by changes introduced by control cards, as explained in the sections that follow. Segment two can be run in conjunction with segment one or separately, as determined by the PROGRAM DEFINITION CONTROL CARD.

TEACHER VECTOR DESCRIPTION

A teacher vector is a complete description of all teachers in a grouping according to the PERSIM variables selected. It is important to understand this concept since the words "teacher vector" occur repeatedly throughout this document. An example of a section of a teacher vector printout is given in Appendix B.

There are four distinct groupings or teacher vectors in the model.

- Starting or Required Teacher Vector
- Output Teacher Vector
- Terminating Teacher Vector
- Hiring Teacher Vector

The relationship of these four vectors is explained under MARKOV TRANSITION MATRIX. A teacher vector is collectively exhaustive in its description of all the teachers in a grouping.

A description within a vector depends upon the FERSIM variable selected. The descriptions represent all possible combinations of the PERSIM variables selected. For instance, if Pay Grade/Pay Step/Termination Code (PG/PS/TC) arrd Subject Area art selected, PERSIM variables 9 and 3, there would be 704 possible descriptions in a vector (32 possible $\operatorname{PG} / P S / T C$ times 22 possible Subject Areas) representing all combinations of the two variables. The vector descriptions would start:

Continued
Index Description

1	PG 1, PS 0 - Agriculture
2	PG 1, PS O-Art
3	PG 1, PS O - Business
4	PG 1, PS O- Distributive Education

After proceeding through all 22 areas within Subject Area, the Pay Step would change to 1 and all 22 Subject Areas would again be paired with the new pay step. This process proceeds unt11 all PG/PS/TC's have been paired.

If 3 or 4 PERSIM variables are selected, then the process is expanded to include all combinations of all variables. The maximum number of descriptions, or combinations of variables, rapidly increases with the maximum size of the PERSIM variables selected. For instance, if PG/PS/TC, Subject Area, and Race/Sex are selected, the vector size increases to 4224 (32 times 22 times 6). In this example, a section of the teacher vector would appear as follows:

Index Description

688 - PG 1, PS 5 - English Black/Female
689
690
691
692

PG 1, PS 5 - English
PG 1, PS 5 - English
PG 1, PS 5 - Foreign Language
PG 1, PS 5 - Foreign Language

Other/Male Other/Female White/Male White/Female

The projection mathematics for the PERSIM model use a Markov transition matrix. This matrix uses historic information to project what the description of a teacher will be from year to year in the future. The profection typically would project a teacher to go to the next higher pay step or perhaps to a'higher pay grade, or to one of the various termination descriptions. The profection is probablistic and is based upon the PERSIM variables selected with respect to the historic data base.

The Markov transition matrix is the mathematics used to relate the four teacher vectors. The four vectors are:

Input or Required Vector - For the first year, this vector represencs the actual teachers in the system today. For the following years, this vector is the sum of the teachers who are remaining and the teachers who have been hired. In specific:
$\begin{aligned} & \text { Output }-\begin{array}{l}\text { Termination } \\ \text { Vector }\end{array} \text { Vector }+ \text { Vector }\end{aligned}=\begin{gathered}\text { Input or Required } \\ \text { Vector }\end{gathered}$

Output Vector - This is a description of all the teachers at the end of the year. After the Markov transition matrix is applied to the year's Input Vector, the resulting changes predicted for the teachers in the system is the Output Vector. This vector includes terminations as well as all the teachers remaining in the system. All of the teachers remaining in the system now have one additional year of experience and some have acquired additional degrees.

Termination Vector - This is a description of all the teachers who will terminate employment during the year. This is a subdivision of the Output Vector.

Hiring Vector - This is a description of all the teachers who will be hired for a year. For the most part, these are the teachers who will replace the terminating teachers. The required vector for the fllowing year will be the sum of the teachers who do not terminate and the Hiring vector. The Hiring vector is generally calculated by finding the difference between the teachers who do not terminate, and the teachers that will be required next year. The positions that remain constitute the Hiring vector. The diagram below is an example of the transition cycle for one year:

2.7

The PERSIM model is controlled through data cards entered at the time of program execution. The data cards, called control cards, enable the user 둥 to change every important parameter in the model. All variables within the model have default values in case no information has been inserted by the user through control cards (see Appendix B). As would be expected, certain farameters must always be specified to make a run meaningful. These parameters are entered by the PROGRAM DEFINITION CONTROL CARD. Additional optional control cards may be used to indicate the changes to be made in modifying the future school system, all at the users discretion.

Befow, under various headings, each control card is explained with its appropriate card column (CC) locations. The first control card, the PROGRAM DEFINITION CONTROL CARD and the last control card, "999999" must always be entered, but all other control cards are optional.

All control cards have a description memonic in card column 1 through 6.

A sample printout of the control cards for a typical run is presented below.

$$
3 . \Lambda 1
$$

PROGRAM CONTROL CONTROL CARDS

PROGRAM DEFINITION CONTROL CARD

Function:		This card defines what the program will do. It tells the number of years of projection, whether or not a new segment two input tape is to be generated (see PROGRA啇 DESCR'IPTION). which PERSIM variables are to obe selected, and how many teachers are in the school system at present. This is always the first control card in the data deck. If an old segment two input tape is to be used, the PERSIM variables. selected must match the ones used before.

Description:
-

Card Column
CCl-3
CC4-6
CC7-9
CC10-12
CCi3-15
CC16-18
CC19-30
CC 31-35

CC36-80
0

Contents
Years of Projection Input tape

PERSIM variable PERSIM variable PERSIM varlable -PERSIM variable Blank Teachers

Blenk

Explanation

Numbers of teachers presently in system. Include decimal point.

Example: A 3-year projectin will generate a new segment two input tape, will use PERSiM variables 9 and 3, and will have 4000 teachers to start with. This card must be the first control card in the data deck.

$000000000000000000000000000000 \ldots 0000000000000000002000000000000000000000000000$

3.A2

PROGRAM CONTROL CONTROL CARDS

TMAT

Function: This control card determines which years of transition in the historic data base will be used in creating the Markov transition matrix. The card also determines the weighting factors applied to each year selected. All years are used and are weighted equally if this control card is omitted.

The purpose of this card is to allow had historic years to be elfminated and to make recent years, when information might be more relevant, have a greater influence upon the transition matrix.

Description:
Card Colum $\begin{array}{ll}\text { CC32-39 } & \text { Weighting Yr } 4 \text { Transtition } \\ \text { CC40-46 } & \text { Weighting Yr } 5 \text { Transition }\end{array}$ $\begin{array}{ll}\text { CC32-39 } & \text { Weighting Yr } 4 \text { Transtition } \\ \text { CC40-46 } & \text { Weighting Yr } 5 \text { Transition }\end{array}$ CC47-80 Blank

Contents
"TMAT"
Blank
Weighting Yr 1 Transition Include decimal point
Weighting Yr 2 Transition in all numbers
Weighting Yr = Transition

Explanation

Example: The user know's that the data for school year 1969-70 is bad and wishes to eliminate ic from the program. This means that the two transition years of 1968-69 to 1969-70 and 1969-70 to 1970-71 are to be eliminated. These are transition years 3 and 4 since the data base starts with 1966-67. It is aiso desired to weight the last year, transition 5 , twice as much.

PROGRAM CONTROL CONTROL CARDS

999999
Function: The last card in the control card string must always be this card. This is a pseudo end of file card that the program uses as an indicator for the end of control card.

Description:

Card Column	Contents
CC1-6	"999999"
CC7-80	Blank

Example: The last card in every deck of control cards must be as follows:

000 , 2

3. A4

The following control cards are generally used before any predictions are made. These cards inftialize various parameiers within the program including correction of input data.

INITIALIZING CONTROL CARDS

ADIVEC

Function: - This card is used for adjusting the initial starting teacher vector. After a retrieval from the data base is complete, many of the teachers known to be in the system may be rejected because of various data editing procedures. Many of the rejected people in the latest year will not show up in the initial starting teacher description-ritten by segment one of the madin program. (See PROGRAM OESCRIPTION). This control card is used to factor all ent ies of the initial starting vector that are known to be alsociated with one description of one particular PERSIM varlable. See example below.

Description

Card Column		Contents
CC1-6		"ADIVEC"
CC7-8		Blank CC9-10
	Variable	
CC11-17		Location

CC18-24	Teachers
CC25-80	
Blank	

Explanation

PERSIM variabíe to be changed, see PERSIM VARIABLES.
Position within PERSIM variablé. Tris description must Be looked up. in Appendix A, PERSIM VARIABLE DESCRIPTIONS. Include decimal point.
Number of teachers desired in the seléted PERSTM yariable description. Include decimal point.

Example: It is known that there are 3000 elementary teachers this year and PERSIM variable 3, Subject Area, has been selected. The following card will factor all associated entries in the initial vector to reflect 3000 elementary teachers. Elementary teacher is Position 19 within PERSIM variable 3, as noted in PERSIM VARIABLE DESCRIPTIONS. It shoyly be noted that any change will be' spread throughout a 1 descriptions of clementary teachers. That is, if Race is selected, then the elementary teacher's race entries will be factored without affecting the race entries in other subject areas. This change will, however, affect the overall race totals.

1

OLDDIS
Function: Find the distribution of the indicated PERSIM variable in the starting teacher vector and use this distribution for future hi ring. The distribution is stored In the HIRERQ buffer (see HEWGEN subroutine description). The new distribution maybe modified by subsequent control cards. • This option allows consistent predictions upon systems where the data is incomplete and/or inaccurate as well as where the distribution within a PERSIM, variable is not known by the user. The OLDDIS option is especially useful when. PERSIM variable RACE or SUBJECT AREA is selected.

Description:

Example:

Card Column
CC1-6

CC 7-8
CC 9-10

9

Contents
"OLDDIS"
Blank -
Integer
Variable

PERSIM variable to be modefled, see PERSIM VARIABLES. See DEFAULT DATA tor presprogrammed values.

INITIALIZING CONTROL CARDS

Function:
*

Description:

Example:

This card finds the inftial starting vector student distributions within subject or certification area when using the long method for hiring projections (see RTLONG subroutine and control card). When the long method for hiring, RTLONG, is not selected, this card is meaningless. Whether PERSIM variable 3; Subject Area, or 4, Certification Area, is actually being used is determined internally by the program and need not be specified by the user. The calculated distribution is based upon the starting teacher vector, average class size, and the average class taught per teacher in each area. The initial distribution serves only as a base for future years and may be changed by subsequent controi cards. This control card is used when complete information about the system is unavailable or when the starting vector is inaccurate or incomplete.

Card Columm	Contents	
CC1-6	"OLDPUP" \quad.	
CC7-80	Blank	

The long method of teacher hiring is selected (see RTLONG subroutine and control card). Percentages of student taking different súbject areas are not known accurately. It is also desired to prevent dramatic distortions in the first year's hiring requirements. The following control card is used.

ULIFIF
$0000-000 \cdot 000000000000009000000$

COST OF TEACHERS

The cost of the teachers in the system are calculated based upon a teacher base salary and specific indexes for experience and education. The present system calls for three grades, being Bachelor's Master's, and ${ }^{\circ}$ Doctoral degrees, with forresponding steps for years of experience in each grade. The table of default indexes is in Appendix B. The following control cards can be used to change the teacher base salary and the indexes:

COST OF TEACHERS CONTROL CARDS

BASINC

Function:
This card changes the teacher base salary for all years of the projection. The teacher base salary is multiplied by various indexes to get the salary of teachers with different education and experience. There are 5 options avallable for changing the teacher base salary:

	Option	$\frac{\text { Information in }}{\text { data f1elds }}$	$\frac{\text { Change in Teachers' }}{\text { Base Salary }}$
	1.	Blank	Increase by 4% in eàch year of the projection.
	2.	Percentage	Increase by the percentages specified for each corresponding year.
-	3.	Dollar increment, one entry	Increase every year by this amount.
	4.	Dollars increment	Increase by individual amounts specified for each corresponding year.
	5.	Dollar values	Replace existing entry with this year by year data.
Description:	Card Columm	Contents	Explanation
	CC1-6	"BASInC"	
	CC7-9	Blank	
	CCí0	. Option	See Above.
	CC11-17	Year 1 daţa	Include decimal point.
	CC18-24	Year 2 data	Include decimal point.
	CC25-31	Year 3 data	Include decimal point.
	CC32-38	Year 4 data	Include decimal point.
	CC39-45	Year 5 data	Include decimal point.
	CC46-52	Year 6 data	Include decimal point.
	CC53-59	Year 7 data	Include decimal point.
	CC60-66	Year 8 data	Include decimal point.
	CC67-73	Year 9 data	Include decimal point.
	CC74-80	Year 10 data	Include decimal point.
Example:	Increase the $\$ 200$ in four	acher base salary rs of'projection	$\$ 300$, nothing, $\$ 500$, and This uses option 4.

[^1]3.c2 ?

INDEX

Function:

Description:
Card Column
CC1-6
CC7
CC8-9
CCl 10
CC11-15
CC16-20
CC21-25
CC26-30
CC $31-35$
CC 36 -40
CC41-45
CC46-50
CC51-55
CC56-60
CC61-65
CC66-70
CC71-75
CC76-80

Contents
"IANDEX"
Year
Blank
Pay Grade
Pay Step 0
Pay Step 1
Pay Step 2
Pay Step 3
Pay Step 4
Pay Step 5
Pay Step 6
Pay Step 7
Pay Step 8
Pay Step 9
Pay Step 10
Pay Step 11
Pay Step 12
Pay Step 13

Explanation

Include decimal point Zero entries are skipped. Pertinent steps are 0-10 Bachelor's 0-12 Master's 0-13 Doctorate

Example:
It is desired to increase the step rate to 7% for Masters degree with 8 years of experience or greater in year 3. The Index for Pay Grade 2, Step 8 is to be 2.00 .

1

PRINTOUT CONTROL CARDS

There are ten control cards used to determine the amount and type of printout. The default condition, if none of the control cards are employed, is to print all material available. There are two types of printout. The first type is a year by bear grouping of each PERSIM variable selected for that run against every other PERSIM variable selected. The second type of printout is a detailed description by description listing of the entire teacher vector with all years being grouped together. An example of the first types of listings is given in Appendix C. ${ }^{\delta}$

INPMAT, OUTMAT, TRMMAT, HIRMAT

| $\overline{\text { RMM }} 1 \mathrm{c}$

HIFMATE'

PRINTOUT CONTROL CARDS

NOMATS.
Function: This card deletes all printing of the annual charts of PERSIM variables for the year indicated.

Description:

Card Colum		Contents
CC1-6		"NOMATS"
CC7		Year
CC8-80		Blank

Example: Delete all charts for year 4.

लोगिदTSA

0000 000000008000800000000000000000000000

[^2]*not presently functional

!)

3. D4

PRINTOUT CONTROL CARDS
NOVECS

Example: Delete all detailed vector printouts.

NUYES

- 1

* noi presently functional

PRINTOUT CONTROL CARDS

ORDVEC *
Function: This control card determines the order in which the selected PERSIM variables will be varied on the detailed vector printout.

Description:

Card Columm
CC1-6
CC7
CC8-9
CC10-11
CC12-13
CC14-15
CC16-80

Contents
"ORDVEC"
Blank
lst varlable Order that variables 2nd variable are to be varied'in.

Explanation

3 rd variable 4th variable Blank

Example:
Print PERSIM variable 3 before 9 and 1.

UFDGES $\because 91$

* not presently functional

HIRING CRITERIA

PERSIM contains three methods of determining the hiring requirements for , the school system. Each method has control cards peculiar to it alone, in : addition to the general control cards which apply to all methods. The control cards pertinent to each section are grouped together under the appropriate headings. The general control cards which apply to all methods are listed below.

It should be pointed out that all predictions follow a similar path of calculations, yielding four distinc teacher vector description types (see MARKOV TRANSITION MATRIX). A teacher vertor is merely a description of all the teachers in the system by PERSIM variable (see TEACHER VECTOR DEFINITION). The logic flow of the calculations is as follows. Notice 4 distinct teacher vectors.

$\because 3 . E 1$

GENERAL HIRING CONTROL CARDS -- affect all three hiring methods.

PUPILS, EPUPIL

Function: These cards dewribe the overall number of secondary and elementary studer-s in the school system. The number of pupils will ultimatel determine the number of teachers required under all three hiring methods, as explained within each method.

Description:
(2 control cards)
CC1-6
CC7-10
CC11-17
CC18-24
CC25-31
CC 32-38
CC $39-45$
CC46-52
CC53-59
CC60-66
CC67-73
CC74-80
CCl-6
CC7-10
CC11-17
CC18-24
CC25-31
CC32-38
CC39-4
CC46-52
CC53-59
CC60-56
CC57-73
CC74-80

Contents

"PUPILS"
Blank
Year 2 data
Year 3 data
Year 4 data
Year 5 data
Year 6 data
Year 7 data
Year 8 data
Year 9 data Blank
"EPUPIL"
Blank
Year 1 data
Year 2 data
Year 3 data
Year 4 data
Year 5 data
Year 6 data
Year 7 data
Year 8 data
Year 9 data E1ank

Year 1 data Year by year projected number

- Explanation of secondary students in the school system. Include decimal point. See DEFAULT DATA for pre-programmed values.

Year by year projected number of elementary students in school system. Include decimal point. See DEFAULT DATA for pre-programmed values.

Example: There tre 50,000 secondary and 60,000 elementary pupils projected to be in the system for years 1 through 3 .

$111,111 \mid 1111111111$

GENERAL HIRING CONTROL CARDS --- affect SHORT and LONG METHODS OF HIRING

HIRERQ

Function: This card changes the fractional distribution in which teachers will be hired. The various PERSIM variables fall into two distinct types.

Physical or Legal restriction types--Subject Area, and Certification Area hiring is determined by physic 1 limitations. That is, the requirements will be determined by which courses pupils will be taking and how many teachers remain from year to ygar. The Race variable is determined by law, so hiring must be done in a manner such that the next years racial mix will meet legal requirements.

Arbitrary types---all other PERSIM variables can be assigned arbitrary distributions for hiring. For instance, the education level and experience level of the new hires can be set at any distribution desired.

The total of the hiring distribution entries within each PERSIM variable must be 1.0. There are default values for all variables. If the user wishes to employ historic ratios, the OLDDIS control card can be employed (see INITIALIZING CONTROL CARDS).

There are 5 options available when using the HIRERQ control card.

Option

0 or Blank

Description

Replace existing information for hiring distribution with information on this contiguous string of cards. Each card contains 10 entries with the first card starting in location 1 and the following cards commencing where the prior card left off. That is, card 1 enters areas 1 thrgugh 10 , card 2 enters areas 11 through 20 , and so on. Zero entrics are not ignored.

1 through 4 modify only selected areas. Since the total of the distribution within a PERSIM variable must be 1.00 , any increase in one area must be accompanicd by corresponding decreases in other areas.
1.

Increment one area by the given amount and have the other areas listed evenly absorb the corresponding amount. For example, if 3 other areas are indicated, then the change will be split evenly 3 ways.

HIRERQ, continued

Option \quad| Lescription |
| :--- |
| Increment one area by the given amount and have the other |
| areas listed absorb the corresponding change on a decreasing |
| basis. The ifrst area will absorb 50%, the second area |
| will absorb 25%, and so on, with each succeeding area ab- |
| sorbing one half of the remaining change. The last entry |
| will absorb all that remains. |

3. | Increment one area by the given percentage and have the |
| :--- |
| other areas listed evenly absorb the corresponding amount. |
| This option is the same as option 1 except a percentage |
| instead of an amount is used. |

Increment one area by the given percentage and have the other
areas listed absorb the corresponding change on a decreasing
basis. This option is the same as option 2 except a per-
centage instead of an amount is used.

Description:

Card Column Contents
CC1-6
CC7
"HIRERQ"
CC8 Option
CC9-10
PERSIM VARIAbLE
Option "O" Other Options
(Include decimal point on all entries below)
CC11-17

CC18-24

CC25-31
Data area 3
CC32-33
Data area 4
CC39-45 Data area 5
CC46-52
Data area 6
CC53-59
CC60-66
CC67-73
CC74-80
Data area 7
Data area 8
Data area 9
Data area 10

Amount or percentage, as explained under option, to be changed. 1st area to absorb change. 2nd area to absorb change. 3 rd area to absorb chango. 4 th area to absorb change. 5 th area to absorb change. 6th area to ahsorb change. 7 ih area to absorb change. 8th area to absorb change.

GENERAL HIRING CONTROL CARDS --. affect SHORT and LONG METHOD OF HIRLNG

HIRERQ, continued

Example: It is desired to change the Race distribution entirely, as indicated below. It is also desired to decrase ray Grade 1 , Step 0 hiring by 10% while hiring more Pay Grade 2, Steps 0 through 5. This uses option 3 on an average basis.

SHORT METHGD OF HIRING

This method of calculating hiring requirements uses a systemwide pupil/. teacher ratio. The equation is simply:

$$
\frac{\text { Number of pupils }}{\text { Pupil/teacher ratio }}=\text { Teachers required }
$$

A distinction between secondary and elementary teachers is made because of the obvious division. Control cards for the short method of hiring follow.

SHCRT METHOD OF HIRING CONTROL CARDS

RTSHRT

Function: This card causes the short method of calculating hiring requirements to be used starting in the year indicated. This method remains selected for the following years or until subsequently changed.

PTRATO, EPTRAT

Function:
These cards specify the secondary or the elementary systemwide average pupil/teacher ratio for each year of the projection. The use of this ratio is explained under SHORT METHOD OF HIRING.

Description:	Card Column	Contents	Explanation
	CC1-6	"PTRATO"	
	CC7-10	Blank	
	CC11-17	Year 1 data	Year by year systenwide average
	CC18-24	Year 2 data	secondary pupil/teacher ratio.
	CC25-31	Year 3 data	Include decimal point. See
	CC32-38	Year 4 data	DEFAULT DATA for preprogrammed
	CC39-45	Year 5 data	values.
	CC46-52	Year 6 data	
,	CC53-59	Year 7 data	
,	CC60-66	Year 8 data	
	CC67-73	Year 9 datá	
	CC74-80	Blank	
	CC1-6	"EPTRA.T"	
	CC7-10	Blank	
	CC11-17	Year 1 data	Year by year systemwide average
	CC18-24	Year 2 data	elementary pupil/teacher ratio.
	CC25-31	Year 3 data	Include decimal point. See DE-
	CC32-38	Year 4 data	FAULT DATA for preprogrammed
	CC39-45	Year 5 data	values.
	CC46-52	Year 6 data	
	CC53-59	Year 7 data	
	CC60-66	Year 8 data	
	CC67-73	Year 9 data	
	CC74-80	Blank	
Example:	The first y The seconda ratio goes projection.	econdary and tio goes up per year fur following	tary pupil ratios are 28:1. ear and the elementary 3 additional years of the cards are used:

3.F3

TEACHR, ETEACH

Function: These cards allow the user to specify the exact number of elementary and secondary teachers that are to be employed in the separate years of the projection. If an entry for a year is non-zero, then all calculations to find the number of teachers required, as explained under SHORT METHOD OF HIRING, are bypassed. The number on the control card is used instead. One card contains data for all years of the projection.

Description: (2 control cards)

6C1-6
CC7-10
CC11-17
CC18-24
CC25-31
CC32-38
CC39-45
CC46-52
CC53-59
CC60-66
CC67-73
CC74-80
CC1-6 "ETEACH"
CC7-10
CC11-17
CC18-24
CC25-31
CC32-38
CC39-45
CC46-52
CC60-66 Year 8 data
CC67-73 Year 9 data CC74-80 B lank

Contents
 Explanation

"TEACHR"
Blank
Year 1 data
Year 2 data
Year 3 data
Year 4 data
Year 5 data
Year 6 data
Year 7 data Year 8 data Year 9 data Blank Blank
Year 1 data
Year 2 data
Year 3 data Year 4 data Year 5 data Year 6 data Year 7 data Year 8 data
Year 9 data

Year by year total number of secondary teachers to be employed. Include decimal point. Blank entries are ignored and normal calculations for hiring are performed as explained under SHORT METHGD OF HIRING.

> Year Ey year total number of elementary teachers to be employed. Include decimal point. Blank entries are ignored and normal calculations for hiring are performed as explained under SHORT METHOD OF HIRING.

Example: There are 3000 and 3500 secondary teachers in years 1 and 3, respectively. In year 2 the numbers are to be calculated by the short method.
IEFIGHF 3णOU. 35111.

The long method of hiring uses an area by area pupil/teacher ratio to project the number of teachers required. This method only has meaning if either PERSIM variable 4, Certification Code, or 3, Subject Area, is selected. The basic calculations employ the following three equations:

Classes in area
 $=$ Teachers required in area
 Average number of classes taught
 per teacher in area

It should be noted that reasonably accurate data must be available for each equation if reasonable and consistent results are to be expected. Each variable in the above equations can be changed through specific control cards as explained below. Default values are given whenever the user does not make entries, as explained under DEFAULT DATA. Where applicable, these control cards have two basic options. The option desired is specified on the control cards as follows:

Option Description

0 or blank Read data directly from cards into the parameter specified. There are 10 data entries per card. This option requires multiple sequential cards for complete changes of the larger - PERSIM variables.

1
Increase one location within the parameter specified. This card requires only two data entries: the location to be changed and the amount of the change.

Other options are peculiar to each type of control card as explained below. Any combination of control cards can be entered for each separate year of the projection. For a given year, the cards are performed in the order they are read in. If multiple changes to the same parameter are to be made during the same year, the sequence of the control cards becomes significant.

LONG METHOD OF HIRING CONTROL CARDS

RTLONG

Function:
This card selects the long method od calculating hiring-requirements starting in a given year. This method remains selected for the following years until subsequently changed. This card is redundant if other long method control cards are employed.

[^3]CLSPPU, ECLSPP
Function: These cards define the average number of classes taken by each secondary or, elementary pupil in the system. This number should be concordant with the CLSTCH variabies explained under that heading, as well as in LONG METHOD OF HIRING.

Description:
Card Colum
(2 Control Cards)
CC1-6
CC7-10
CC11-17
CC'n-24
CC_う.
CC3 - 」
CC39-45
CC46-52
CC53-59
CC60-66
CC67-73
CC74-80

CC1-6
CC7-1C
CC11-17
CC18-24
CC25-31
CC $32-38$
CC39-45
CC46-52
CC53-59
CC60-66
CC67-73
CC74-80

Contents

" "CLSPPU"
Blank
Year 1 dała
Year 2 data
Year 3 data
Year. 4 data
Year 5 data
Year 6 data
Year 7 data
Year 8 data
Year 9 data
Blank
"ECLSPP"
Blank
Year 1 data
Year 2 data
Year 3 data
Year 4 data
Year 5 data
Year 6 data
Year 7 data

- Year 8 data

Year 9 data
Blank

Explanation

Average number of classes taken by secondary students. Use decimal point. See DEFAULT DATA for preprogrammed. values.

Average number of classes taken by elementary students. Use decimal point. See DEFAULT DATA for piepiogrammed values.

Example: The average number of classes taken by secondary students is to increase for five years as indicated on the following control card.

 $111111111111111111111111111111111!!111111111111111111111 \mid 11111111$
3.64
$\cdots \cdots$

PUPARA

PUPARA values, once entered, remain unchanged until subsequently modified by control cards.

There are 5 options available when using the PUPARA control card.

Option

Description
0 or Blank Replace existing information for pupil distribution with information on this contiguous string of cards. Each card contains 10 entries:with the first card commencing where the prior cari left off. That is, card 1 enters areas 1 through 10 , card 2 enters aıeas 11 through 20 , and so on. Zero en, tries ara not ignored.

1 through 4 modify only selected areas. Since the total of the distribution within a PLPARA must be 1.00 , any increase in one area must be accompanied by corresponding decreases in other areas.
1.

Increment one area by the given amount and have the other areas listed evenly absorb the corresponding amount. For example, if 3 other areas are indicated, then the change will be split evenly 3 ways.
2.

Increment one ared by the giver amount and have the other areas listed absorb the corresponding change on a decredsing basis. The first area will absorb 50%, the second arca will abscrb 25%, and so on, with each succeeding area absorbing one half of the remaining change. The last entry will absorb all that remains.
3. Increment one area by the given percundage and have the other areas listed evenly absorb the correeponding dmount. This option is the same as option 1 evept d percentage instead of an amount is used.
3.65

PUPARA, continued

4.

Description:
Card Columm
CC1-6
CC7
Cr8
CC9-10
Increment one area by the given percentage and have the other areas listed absorb the corresponding change on a decreasing basis. This option is the same as ;option 2 except a percentage instead of an amount is used.

CC11-17

CC 18-24

CC25-31
CC32-38
CC39-45
CC46-52
CC53-59
CC60-66
CC67-73
CC74-80

Contents

> "PUPARA"
> Year
> Option
> Blank

Option " 0 "
(Include decimal point on all entries below)
Data area 1, (or Area to be incremented. 11 on 2nd card, etc.)
Data area 2

Data area 3
Data area
Data area 5
Data area 6
Data area 7
Data area 8
Data area 9
Data area 10

Other Options

Amount or percentage, as explained under option, to be changed. lst area to absorb change. 2nd area to absorb change. 3rd area to absorb change. 4 th area to absorb change. 5th area to absorb change. 6 th area to absorb change. 7th area to absorb change. 8th area to absorb change.

Example: It is desired to increase the percentage of students taking English (area 5) by 8%, allowing the corresponding decrease to be spreart evenly over areas 6, 7, 8, and 9. In this case PERSIM variable 3, Subject Area, has been chosen. This card will employ option 3.

PUPCLS

Function: This card enters the number of pupils taking classes in the different teaching areas (see PERSIM VARIABLE DESCRIPTIONS, Subject Area and Certification Code). If a "value" is entered using the control card, the program bypasses some of the calculations of the LONG METHOD OF HIRING. The LONG METHOD OF HIRING uses the following equations to find the PUPCLS "value":

```
PUPCLS "VALUE" \(=\) (Total number * (Classes \(\quad\) (Fraction of students
    of pupils) per pupil) taking a particular area)
```

Data for this "value" must te entered every year the "value" is to occur, as the program has no memory capability. If nption " 0 " is employed each card will contain 10 entries with sequential cards commencing where prior cards terminate. That is, if 3 sequential cards are used, the first card modifies areas 1 through 10, the second card medifies areas 11 through 20 , and the third card modifies areas 21 through 30.

Description:	Card Column	Contents	Explanation
	CC1-6	"PUPCLS"	
	CC7	Year	
	CC8	Option desired	See explanation under LONG METHOD OF HIRING.
	CC9-10	B lank	
		Option "0"	Option "1"
		(Include decimal	oint on all entries below).
	CC11-17	Data area 1 (or 11 on 2nd card, 21 on 3rd card,	Area location to be changed.
	CC18-24	Data area 2	Increment to existing data value.
	CC25-31	Data area 3	Blank
	CC32-38	Data area 4	Blank
	CC39-45	Data area 5	Blank
	CC46-52	Data area 6	Blank
	CC53-59	Data area 7	Blank
	CC60-66	Data area 8	Blank
	CC67-73	Data area 9	Blank
	CC74-80	Blank	Blank

3.67 :".!

LONG METHOD OF HIRING CONTROL CARDS

PUPCLS continued

Example: The number of pupils taking English, area 5, in year 3 is to be decreased by 500. Option " 1 ", as explained under LONG METHOD OF HIRING is employed.

```
F|FPLミ$1 5. 5!!!.
```


$3 . G 8$

CLSSIZ
Function: This card changes the average size oi the classes in various teaching areas. It is used in the LONG METHOD OF HIRING equation as follows:

Pupils taking classes in area $=$ Classes taught in area (CLASSS) Average class size (CLSSIZ)

These values, once entered, remain until subsequently modified. if Option " 0 " is employed each card will contain 10 entries with sequential cards commencing where prior cards terminate. That is, if 3 sequential cards are used, the first card modifies areas 1 through 10 , the second card modifies areas 11 through 20 , and the third card modifies areas 21 through 30.

Description:	Card Column	Contents	Explanation
	CC1-6	"CLSSIZ"	
	CC7	Year	
	CC8	Option desired	See explanation in LONG METHOD OF HIRING.
	CC9-10	Blank	
	:	Option "0"	Option "1"
		(Include decimal	oint on all entries below.)
	CC11-. 7	Data area ; (or 11 on 2nd card, 21 on 3rd card, 31 on 4th card)	Area location to be canged.
	CC18-24	Data area 2	Increment to existing data.
	CC25-31	Data area 3	Blank
	CC32-38	Data area 4	Blank
	CC39-45	Data area 5	Blank
	CC46-52	Data area 6	Blank
	CC53-59	Data area 7	Blank
	CC60-66	Data area 8	Blank
	CC67-73	Data area 9	Blank
	CC 74-80	Blank	Blank

F.ample: The average size of art classes, area 2, (Sce PERSIM VARIABLE DESCRIPTIONS) in year 2 is 5 iess than in year 1 . In year 3, the size returns to its former value. Option-"l" as explained in LONG METHOD OF HIRING is employed.

ilajact	¿.
cliskrid	\dot{c}.

CLASSS

Function: This card changes the number of classes to be taught for one year in a teaching area. The number of classes taught in each area is calculated each year in the LONG METHOD OF HIRING from the following equation:

Average class size in area $=$ Number of classes taught in area Pupils ir class by area (CLASSS)

If a value is entered by control card for the number of classes taught in an area for a particular year, then the above calculation is bypassed and the number entered by the control card is used instead. Changes by this card must be made every year as there is no carry forward from year to year. If Option " 0 " is employed each card will contain 10 entries with sequential cards commencing where prior cards terminate. That is, if 3 sequential cards are used, the first card modifies areas 1 through 10, the second card modifies areas 11 through 20 , and the third card modifies areas 21 through 30.

Description: Card Columm Contents Explanation

CC1
CC

CC ε
CC9-10

CC11-17

CC18-24
CC25-31
CC32-38
CC39-45
CC46-52
CC53-59
CC60-66
CC67-73
CC74-80
"CLASSS"
Year
Option desired See explanatic. in LONG METHOD OF HIRING.
Blank
$\frac{\text { Option " } 0 \text { " }}{\text { (Include decimal point on all entries below) }} \frac{\text { Option }}{}$ Data area 1 (or Area location to be changed.
11 on 2nd card,
21 on 3rd card,
31 on 4th card)
Data area 2 Increment to existing data.
Data area 3 Blank
Data area 4 Blank
Data area 5 Blank
Data area 6 Blank
Data area 7 Blank
Data area 8 Blank
Data area $9 \quad$ Blank
Blank Blank

CLASSS continued

$$
\begin{array}{ll}
\text { Example: } & \text { It is desired to set the number of classes to be taught in } \\
\text { areas two through six for year } 2 \text {. Option "0" as explained } \\
\text { under LONG METHOD OF HIRING is to be used. }
\end{array}
$$

CLSTCH

Function: This card changes the average number of classes taught by the teachers in each teaching area. This value is needed in the following equations from the LONG METHOD OF HIRING.

Classes in area (CLASSS)
Average number of classes taught by a teacher in an area (CLSTCH)

These values, once entered, remain until subsequently modified. If Option"0" is employed each zard will contain 10 entries with sequential cards commencing where prior cards terminate. That is, if 3 sequential cards are used, the first card modifies areas 1 through 10 , the second card modifies areas 11 through 20 , and the third card modifies areas 21 through 30.

Description:	Card Colum	Contents	Explanation
	CC1-6	"CLSTCH"	
	CC7	Year	
	CC8	Option desired	See explanation in LONG METHOD OF HIRING.
	CC9-10	Blank	
'		Option "0"	Option "1"
		(Include decimal	int on all entries below).
	CC11-17	Data area 1 (or 11 on 2nd card, 21 on 3rd card, 31 on 4th card)	Area location to be changed.
	CC18-24	Data area 2	Increment to existing data.
	CC25-31	Data area 3	Blank
	CC32-38	Data area 4	Blank
	CC39-45	Data area 5	Blank
	CC46-52	Data area 6	Blank
	CC53-59	Data area 7	Blank
	CC60-66	Data area 8	Blank
	CC67-73	Data area 9	Blank
	CC74-80	Blank	Blank.

Example: The average number of classes taught by each math teacher, area 11 , (see PERSIM VARIABLE DESCRIPTIONS), is decreased by 0.5 starting with projection year 3. Option " 1 " as explained in LONG METHOD OF HIRING is employed.

LONG METHOD OF HIRING CONTROL CARD

TCHREQ

Function: This card defines the number of teachers required in various teaching area. It is the result of the LONG METHOD OF HIRING equation as follows:
$\frac{\text { Classes in area (CLASSS) }}{\text { Average number of classes taught }}=\begin{aligned} & \text { Teachers required in } \\ & \text { teaching area (TCHREQ) }\end{aligned}$ by a teacher in an area (CLSTCH)

If a value is entered by control card for the number of teachers required for a particular teaching area for a particular year, then the above calculation is bypassed and the number entered by the control card is used instead. Changes by this card must be made every year as there is no carry forward from year to year. If Option " 0 " is employed each card will contain 10 entries with sequential cards commencing where prior cards terminate. That is, if 3 sequential cards are used, the first card modifies areas 1 through 10, the second card modifies areas 11 through 20 , and the third card modiffes areas 21 through 30.

Card Column
CC1-6
CC 7
CC8
CC9-10

CC11-17

CC18-24
CC25-31
CC32-38
CC39-45
CC46-52
CC53-59
CC60-66
CC67-73
CC74-80

Contents
"TCHREQ"
Year
Option desired
Blank
Option "0" Option "1"
(Include decimal point on atl entries below). Data area 1 (or Area location to be changed. 11 on 2nd card, 21 on 3rd card, 31 on 4 th card)
Data area 2
Data area 3
Data area 4
Data area 5
Data area 6
Data area $7 \quad$ Blank
Data area 8 Blank
Data area 9 Blank
Blank

Explanation

See explanation in LONG METHOD OF HIRING.

Number of teache:s in area. Blank Blank Blank Blank Blank

LONG METHOD OF HIRING CONTROL CARDS

TCHREQ continued

Example:

It is desired to have 65 Math (Area 11) teachers in year 4. The LONG METHOD OF HIRING has been selected. PERSIM variable 3, Subject Area, has been selected.

ICHFEGA1 $11 . \quad 65$.

This method hires people in a manner such that the distribution will not change in the next year. That is, the hiring will be such that there will be the same distribution within the selected PERSIM variables as in the prior year. The percentage of teachers within each area of each selected PERSIM variable is maintained by forcing the hiring to fill the differences between those remaining in the system and the required numbers. This method of hiring uses a systemwide pupil/teacher ratio in exactly the same manner as the SHORT METHOD OF HIRING to calculate the number of teachers required in the coming year. That is, the number of teachers required may change, but the percentage of teachers in separate areas by individual PERSIM variable will remain the same. This method does not assure that the description of the teachers within the system will remain unchanged, but that the distribution of teachers within each individual PERSIM variable selected will be the same.
\dot{A} description of the control card for this method of hiring follows.

OLD DISTRIBUTION METHOD OF HIRING CONTROL CARDS

RTOLD
Function: This control card invokes the OLD DISTRIBUTION METHOD OF HIRING starting in the year indicated. This method will continue to be used until subsequently changed.

Description:	Card Column	Contents		Explanation
	CCl-6	"RTOLD"		
	CC7	Year		Projection year when OLD
	CC8-80	Blank		DISTRIBUTION METHOD is

Example: Use the old distribution method of hiring starting in year 3.

R1ULU :
[1.

[^4]Appendix A

PERSLM VARIABLE DESCRIPTIONS

Var	iable	Item
1. Race		1. White
		2. Black
		3. Mexican-American
		4. Other
2.	Sex	1. Male
		2. Female
3.	Subject Areas	1. Agriculture
		2. Art
		3. Business
		4. Distributive Education
		5. English Language Arts
		6. Foreign Languages .
		7. Health Occupations
		8. Health \& Physical Education
		9. Homemaking
		10. Industrial Arts
		11. Mathematics
		12. Music
		13. Science
		14. Office Occupations
		15. Social Studies
		16. Technical Education
		17. Trades \& Industry
		18. Occupational Needs
		19. Elementary Education
	\cdots	20. Handicapped Children
		21. School Nurse
		22. Librarian
4.	Certification	1. Biology
	Area	2. Chemistry
		3. Physics
		4. Science-General
		5. Mathematics
		6. Library
		7. English
		8. Journalism
		9. Speech
		Drama

Variable

1. Race
2. Sex
3. Subject Areas
4. Cértification Area
5. Chemistry
6. Physics
7. Science-General
8. Mathematics
9. Library
10. English
11. Journalism
12. Speech

Drama
Appendix A -. PERSIM VARIABL DESCRIPTIONS
4. (Continued) 1U. Agriculture
11. Geography
12. Government
13. History
14. Social Studies
15. Economics
Psychology
Sociology
16. Home conomics
17. French.
18. Latin/German
19. Spanish
20. School Nurse
21. Art
22. Industrial Arts
23: Business
24. Health \& P.E.
25. Music
26. Elementary
27. Special Education
Deficient Vision
Physi ally Handicapped
Deficient Hearing
Retarded
Speech Correction
Emotionally Disturbed
28. Occupational Programs
Trades \& Industries (Co-op)
Distributive Education
Other Occupational Programs
1. Less than 2 years of college
2. 2 years of college
3. 3 years of college
4. Bachelor's degree
5. Master's degree
6. Doctoral degree
$\begin{array}{lll}\text { 6. Professional Status } & \text { 1. Elementary } \\ & \text { 2. Senior High School }\end{array}$
2. Senior High School
7. Professional Status
and Termination
Code
5. Highest Degree (Not presently usable)
Appendix A -. PERSIM VARIABL- DESCRIPTIONS
4. (Continued) 1U. Agriculture
11. Geography
12. Government
13. History
14. Social Studies
15. Economics
Psychology
Sociology
16. Home conomics
17. French.
18. Latin/German
19. Spanish
2'. School Nurse
21. Art
22. Industrial Arts
23: .Business
24. Health \& P.E.
25. Music
26. Elementary
27. Special Education Deficient Vision Physi ally Handicapped Deficient Hearing Retarded Speech Correction Emotionally Disturbed
28. Occupational Programs Trades \& Industries (Co-op) Distributive Education Other Occupational Programs

1. Less than 2 years of college
2. 2 years of college
3. 3 years of college
4. Bachelor's degree
5. Master's degree
6. Doctoral degree
7. Professional Status
8. Elementary
(raw data 10)
9. Senior High School
3. Junior High
4. Special and Other
(12)
(other)

10. Elementary Classroom Teacher (raw data 10)
11. High School Classroom Teacher (11)
1. Junior High
2. Elementary Classroom Teacher
3. High School Classroom Teacher
4. Junior High Classroom Teacher
5. Kindergarten

Kindegarten Teacher
Early Childhood Educ. for Handicapped
Appendix A - PERSIM VARIABLE DESCRIPTIONS
7. (Continued) 5. Liorarian (raw data - 32
6. School Nurse (33)
7. Visiting Teacher (35)
8. Itinerant Teacher (36)
9. Deficient Vision (41)
10. Physically Handicapped (42)(4041)
Orth Handicao School Room (4042)
Orth. Handicap at Home (4142)
Orth Handicap in Hospital (4242)
Vocational Handicapped (6067)
11. Deficient Hêaring (43)
Auditorally Handicapped (4343)
Teacher of Pre-School Deaf (95)
Teacher of County-Wide School for Deaf (96)
12. Retarded (44)
Physically Handicap/Mentally Retarded (4244)
Minimally Brain-Injured (4342)
Mentally Retarded-Educable (4444)
Mentally Retarded-Trainable (4544)
13. Speech Correction (45)
Speech and Hearing (4545)
14. Emotionally Disturbed (47)
Emotionally Distrubed-Elementary (4647)
Emotionally Disturbed-Secondary (4747)
Emotionally Disturbed-Hospital (4847)
Emotionally Disturbed-Community Center (4947)
Emotionally Disturbed-Homebound (5047)
15. Trades \& Industries (Shop) (61)
Tri'əzs \& Industries (Cc"op) (62)
Vc : ional-Industria(6062)
CVAr-Industrial (6662)
Ind'ıstrial Handicapped (6762)
16. Agriculture (63)
Vocational-Agriculture (6063) (6063)
CVAE-Agriculture (6663)
Agriculture Handicapped (6763)
17. Homemaking(64)
Hor -making-Useful (6064)
Hot laking-Gainful (6164)
CVAE-Homemaking (6664)
Homemaking Handicapped (6764)
18. Distributive Education (65)
Vocational-Distributive Ed. (6065)
CVAE-Distributive (6665)
Distributive Handicapped (6765)

Appendix A - PERSIM VARIABLE DESCRIPIIONS

Undefined
8. DISD Salary
(Not presently usable)
9. Pay Grade, Pay Step, and Termination Code

	Pay Grade 1	Pay Step 0
	Pay Grade 1	Pay Step
3.	Pay Grade 1	Pay Step
4.	Pay Grade 1	Pay Step
5.	Pay Grade 1	Pay Step
6.	Pay Grade 1	Pay Step
7.	Pay Grade 1	Pay Step
8.	Pay Grade 1	Pay Step
9.	Pay Grade 1	Pay Step
10.	Pay Grade 1	Pay Step
11.	Pay Grade 1	Pay Step 10
12.	Pay Grade 2	Pay Step
13.	Pay Grade 2	Pay Step
14.	Pay Grade 2	Pay Step

[^5]Appendix A - reRSIM VARIABLE DESCRIPTIONS
9. (Continued) 15. Pay Grade 2
16. Pay Grade 2
17. Pay Grade 2
18. Pay Grade 2
19. Pay Grade 2
20. Pay Grade 2
21. Pay Grade 2
22. Pay Grade 2
23. Pay Grade 2
24. Pay Grade 2
25. Pay Grade 3

Pay Step 3
Pay Step 4
Pay Step 5
Pay Step 6
Pay Step 7
Pay Step 8
Pay Step 9
Pay Step 10
Pay Step 11
Pay Step 12
All Steps

TERMINATION CODE
26. Reassigned in DISD to non-teaching job.
27. Accepted job at another school district
28. Accepted job outside of teaching or education profession
29. Quit for personal or family reasons
30. Deceased
31. Regular or disability retirement
32. Leave of absence
10. Professional Status

Same as vaiiable 7 without items 28 through 34 Without Terminations
11. Principal's Rating 1. Excellent (Not presently 2. Good
usable) 3. Conditional
4. Unacceptable
12. National Teacher's Undefined Exam (Not presently usable.)

Appendix A - PERSIM VARIABLE DESCRIPTIONS
13. Race-Sex Combination

1. White Male
2. White Female
3. Black Male
4. Black Female
5. Mexican-American Male
6. Mexican-American Female.
7. Other Male
8. Other Female

Appendix B

DEfal'LT values
When no information for a parameter is specified by the user through control cards, the program automatically uses pre-programmed information. The following is a list of these default values:

Appendix B

DEFAULT VALUES, continued

CLSTCH - Classes per teacher by subject area

Area		Classes
1.		5.00
2.		4.97
3.		4.85
4.		5.12
5.	5.00	
6.	5.00	
7.	5.00	
8.		4.90
9.		4.95
10.		4.90
11.	4.88	
12.	4.90	
13.	4.85	
14.	5.10	
15.	4.80	
16.	5.00	
17.	5.20	
18.	5.00	
19.	5.00	
20.	2.50	
21.	5.00	
22.	5.00	

Appendix B

INDEX - Teacher Pay Grade/Pay Step Indexes
The following will be the same for all years.

Pay Grade 1
Pay Step 0-1.00
Pay Step 1-1.04
Pay Step 2-1.08
Pay Step 3-1. 13
Pay Step 4-1. 18
Pay Step 5-1. 23
Pay Step 6-1. 28
Pay Step 7-1. 33
Pay Step 8-1.38
Pay Step 9-1.44
Pay Step 10-1. 50

Pay Grade 2

Pay Step 0-1.10
Pay Step 1-1.14
Pay Step 2 - 1.18
Pay Step 3-1.23
Pay Step 4-1.28
Pay Step 5-1.33
Pay Step 6-1.38
Pay Step 7-1.43
Pay Step 8-1.48
Pay Step 9 - 1.54
Pay Step $10-1.60$
Pay Step 11 - 1.66
Pay Step 12 - 1.72

Appendix B

HIRERQ - The distribution for hiring teachers

PERSIM Variable	Area	Value
1	1	. 75
	2	. 25
	3	. 00
	4	. 00
2	1	. 50
	2	. 50
3	1	. 25
	2	. 25
	3	. 25
	4	. 24
	All others	. 00
4	1	1.00
	All others	. 00
5	All zero	
6	All zero	
7	1	1.00
	All others	. 00
8	Not presently	usable
9	1	. 52
	2-7	. 05
	8-11	. 04
	12-13	. 01
	All others	. 00
10	All zero	
11	Not presently	usable.
12	Not presently	usable.
13	1	1.00
	All others	. 00

4. B4
rnc.

[^0]: 11

[^1]: 10000000000 00000000000 . 00000 _ 000000000000000000200000000008000000000000000
 (111

[^2]: 1000
 111

[^3]:

[^4]:

[^5]: 4. A4
